Mutations that hit coding genes can result in the production of aberrant proteins.
About four years ago, Luis Diaz walked into Bert Vogelstein’s office at Ludwig Johns Hopkins and announced that he’d just had something of a scientific insight. Diaz, an oncologist and accomplished cancer geneticist, had been watching the progress of a class of cancer immunotherapies known as checkpoint blockade with a touch of surprise. As the son of a prominent immunologist, he had grown up virtually breathing immunology and had an instinctual feel for the subject. “I often say that immunology is my hobby,” he says. “But I’d always believed it would be very tough to elicit an immune response against a tumor. In fact, until relatively recently, I didn’t think we’d ever have an immunotherapeutic approach that would work.”

Now, Diaz told Vogelstein, co-director of Ludwig Johns Hopkins, he thought he knew why antibodies against a protein named programmed death-1 (PD-1) were eliciting intense anti-tumor immune responses in some patients. The cancer cells in responsive patients, Diaz suspected, were laden with many more mutations across their genomes than those of patients who had not responded to the therapy. This suggested, he said, that cancers of any type that are deficient in their ability to repair DNA might be susceptible to checkpoint blockade.

His hunch laid the foundation for a clinical trial—published in the New England Journal of Medicine (NEJM)—that thrilled the oncology community. Diaz and his colleagues found that, regardless of their tissues of origin, tumors whose cells are deficient in repairing mismatched DNA sequences, and so preventing a gross accumulation of mutations, are far more susceptible to the anti-PD-1 antibody pembrolizumab than those that retain this ability. Equally important, candidates for such treatment can be easily identified by genetic tests that have been on the market for about two decades.

From hallway to clinic
Diaz’s hypothesis may have been a mite premature back in 2012, but he and
Vogelstein nonetheless shot off a letter on the matter to NEJM. The journal promptly rejected their proposal.

Still, Diaz believed he was onto something, and he had found an enthusiastic sounding board for his ideas. Vogelstein—and, independently, Ludwig San Diego Director Richard Kolodner—had in the early 1990s discovered the genetic basis of an inherited propensity for colon cancer known as Lynch syndrome. They had shown that Lynch patients had defects in genes that repair DNA, making them prone to mutations of all sorts, including those that cause cancer.

Diaz, who specializes in treating colon cancer, also knew that the tumors of Lynch patients tended to be highly infiltrated with immune cells and that these patients live longer with their cancers than do most other colon cancer patients. Meanwhile, clinical studies were showing that melanomas respond quite well to PD-1 blockade. These tumors, like those of tobacco-related lung cancers, are known to have highly mutated cells.

BETTER TOGETHER Jedd Wolchok and Stephen Hodi

The evaluation of mechanistically distinct immunotherapies in combination for a variety of cancer types is among the most intriguing trends in cancer research. Jedd Wolchok of Ludwig MSK and Stephen Hodi of Ludwig Harvard are among the pioneers of the strategy, testing the effects of combination checkpoint blockade in patients with advanced melanoma. In 2015, they caused a bit of a stir in the medical community with their publication of the results of a multicenter, Phase 3 trial they led.

The study, which was funded by Bristol-Myers Squibb showed that a combination of the CTLA-4 inhibitor ipilimumab and PD-1 inhibitor nivolumab induces more frequent responses and considerably longer progression-free survival in patients with advanced melanoma than the administration of either of them alone. Published in the *New England Journal of Medicine*, these results prompted the US Food and Drug Administration to approve the combination for patients with advanced, inoperable melanoma.

Wolchok, Hodi and their colleagues found that for ipilimumab alone, the median overall progression-free survival (PFS)—the length of time following treatment before the cancer resumes its growth—was 2.9 months. Patients treated with nivolumab alone had a median PFS of 6.9 months, while the combination of the two resulted in a PFS of 11.5 months. The team also reported that 19% of patients treated with ipilimumab alone and 44% treated with nivolumab had an objective response to each therapy, measured as a significant reduction in tumor size. The response rate for the combination therapy was 58%.

CTLA-4 is a protein found on T cells, which can destroy cancerous and diseased cells. When switched on, it tamps down T cell activity. PD-1, also found on the surface of T cells,
He and Vogelstein began discussing the idea with colleagues at Johns Hopkins. They learned in those discussions that anti-PD1 antibodies had generally failed to induce responses in one trial involving colon cancer patients. But, in a casual hallway conversation, Diaz learned that one patient out of the 33 enrolled in that trial had in fact responded rather well. Diaz asked that the tumor sample from that patient be tested for its mutational load.

“He and Vogelstein began discussing the idea with colleagues at Johns Hopkins. They learned in those discussions that anti-PD1 antibodies had generally failed to induce responses in one trial involving colon cancer patients. But, in a casual hallway conversation, Diaz learned that one patient out of the 33 enrolled in that trial had in fact responded rather well. Diaz asked that the tumor sample from that patient be tested for its mutational load.

“Colon cancer cells typically only have a few dozen mutations,” says Diaz. “But we were thinking, maybe that patient’s tumors had mismatch repair deficiencies and would harbor thousands of mutations per cell. And, lo and behold, that turned out to be the case.”

Excited, Diaz and Vogelstein asked Merck—which makes pembrolizumab—and other companies making anti-PD-1 antibodies whether they would be interested in supporting a trial testing his idea. The answer was, uniformly, no. Coaxed and cajoled by Diaz, however, Merck finally gave in a little: it would donate the drug, but Diaz would

is activated by a protein known as PD-L1, an event that prompts T cells to self-destruct. Both proteins prevent excessive autoimmunity and the destruction of healthy tissues following immune responses to infections. Many tumor cells, however, hijack this protective mechanism and express PD-L1 to thwart T cell attack.

Since its FDA approval, the combination therapy has been welcomed by oncologists, who need every edge they can get against this remarkably aggressive malignancy.

“It has definitely caught on,” says Wolchok. “Here at MSK it’s our go-to option for people who we feel have the medical reserve for some of the side effects that may occur with the treatment.” Those side effects, he points out, can be managed in many patients.

Wolchok, Hodi and their colleagues continue to collect data on the overall survival of patients who participated in the Phase 3 trial.
have to find the funding elsewhere and agree
to sponsor the trial—accepting liability and
responsibility for its management.

“Fortunately,” says Diaz, “we got support for
the trial from the philanthropy Swim Across
America, which, along with Ludwig, supports
my research. We were able to run the trial on
a shoestring budget.”

Green lights
Diaz recruited a young gastrointestinal
oncologist, Dung Le, an assistant professor
of oncology at Johns Hopkins, to lead the
study with him. Their clinical trial involved
three cohorts from a total of 41 patients,
all of whom had very advanced cancers.
One included patients with colon cancer
that was deficient in DNA repair. The second
enrolled patients with a variety of other
cancers that were similarly dysfunctional,
while the third included colon cancer patients
whose tumors were proficient in such repair.
All patients were given pembrolizumab, after
which they were evaluated for reduction in
tumor size (immune-related objective
response rate, or irORR) and for progression
disease at 20 weeks (progression-free
survival, or irPFS).

The results were stunning. The DNA repair-
deficient colon cancer patients, many of
whom were at death’s door when they
entered the trial, had an irORR of 40% and
an irPFS of 78%. Patients with other DNA
repair-deficient cancers had an irORR of
71% and an irPFS of 67%. None of the colon
cancer patients whose tumor cells could
repair DNA responded to the therapy, and
this cohort’s irPFS at 20 weeks was only 18%.
Diaz and his colleagues reported that DNA
repair-deficient tumors harbor more than
20 times as many mutations as proficient
ones. High rates of mutation, they found, are
associated with prolonged progression-free
survival following PD-1 blockade.

“Right now our focus
is on colon cancer,”
says Diaz, “but I can
tell you that this
is probably going
to be tumor-type
independent, as this
genetic marker is
found across a
variety of cancers.”
That makes sense. Mutations that hit coding genes can result in the production of aberrant proteins. These may be seen by the immune system as foreign, prompting a response lethal to cancer cells. It is this response that would be further stimulated by checkpoint blockade.

Merck was excited by the results: It immediately launched two large scale trials led by Diaz and Le to obtain regulatory approval for the therapy, one of them as first-line therapy for DNA repair-deficient colon cancers. The US Food and Drug Administration was impressed as well. It gave the therapy “breakthrough” status in November to speed its path to the clinic.

“Right now our focus is on colon cancer,” says Diaz, “but I can tell you that this is probably going to be tumor-type independent, as this genetic marker is found across a variety of cancers. We think the eligible patients may represent as many as one in 25 of all cancers.”

Diaz, for his part, is most excited for his patients.

“I would walk into the room of a man who was being consented for hospice, give him a drug and watch his tumor melt away,” says Diaz, recalling the thrill of the trial. “These patients typically had just weeks to live when they enrolled. More than half of them had a major response to the therapy. Some had complete responses. It’s still very satisfying to continually interact with people who would not be living today if they hadn’t been offered this therapy.”