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“ We both try to 
integrate our lab 
work and clinical 
work as much  
as possible.”



17

That includes some rather brilliant science. 
In 2015, their extended collaboration 
resulted in the publication of two particularly 
noteworthy papers. First, their laboratories 
described in Nature Methods an analytical 
process named Cibersort that applies 
gene expression profiling and advanced 
computational analysis to trace back the 
precise spectrum of cell types contained  
in a slurry of disassembled tissue. 

In the second study, published in Nature 
Medicine, Alizadeh, Diehn and their 
colleagues in the Center for Cancer  
Systems Biology at Stanford integrated 
the gene expression patterns of 39 types 
of cancer from nearly 18,000 cases with 
information on how long each patient 
survived. Their analysis of the resulting 
database, PRECOG, identified small  

sets of genes that are associated— 
across a surprisingly broad spectrum of 
cancer types—with either good or bad 
patient prognoses. They then applied 
Cibersort to the cases they’d analyzed, 
discerning complex associations between 
patient survival and the presence of  
some 22 distinct types of immune cells  
in tumors.

An eye on patients 
Aside from pipettes, food and reagents, 
Alizadeh and Diehn also share a guiding 
principle. “We both try to integrate our lab 
work and clinical work as much as possible,” 
says Diehn. Alizadeh, a clinical oncologist, 
specializes in lymphoma, while Diehn, a 
radiation oncologist, focuses on lung cancer. 
These are, respectively, among the most 
common blood cancer and solid-tumor types.

DNA DETECTIVES
There’s no single formula for the elements of a productive 
partnership. But, as Ash Alizadeh and Maximilian Diehn would 
attest, a warm friendship certainly improves the chemistry.  
The Ludwig Stanford researchers have been fast friends for  
some 20 years now. “We’re basically family,” says Alizadeh.  
“We started medical school in Stanford at the same time. We were 
in graduate school together. We still work on the same lab bench, 
sharing reagents, food and all the stuff we did at graduate school. 
Our offices are right next to each other and we run joint group 
meetings. We’re connected in almost everything we do.”

ASH ALIZADEH AND MAXIMILIAN DIEHN
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“We think what we’re working on in these 
areas should extend to cancer broadly, in line 
with Ludwig’s mission,” says Alizadeh. “So we 
try to take moonshot types of experiments 
and reduce them to practice, to what can be 
done for the average patient.”

Consider their work with circulating tumor 
DNA (ctDNA), which is shed by dead cancer 
cells and can, with some analytical finesse 
and the latest technologies, be detected in 
blood and other fluids. “We both became 
interested in ctDNA as part of our clinical 
routine,” says Diehn. “Ash was running some 
assays available for lymphoma patients, 
and I was frustrated that there are no good 
biochemical markers for lung cancer.”

In 2014, the pair reported in Nature Medicine 
a highly sensitive, minimally invasive method 
for detecting non-small cell lung cancers 
(NSCLCs) in patients. Their technique, 
CAPP-Seq, detected 50% of Stage I 
NSCLC, and 100% of Stage II-IV NSCLCs. 
The researchers also found that they could 
assess treatment responses earlier than 
they did using radiologic imaging. They 
are now developing more sensitive tests 
for Stage I NSCLC—when the cancer is 
most treatable—and similar tests for other 
malignancies, including those of the blood, 
brain and gastrointestinal tract. 

These applications were enabled by 
improvements the researchers made to 
CAPP-Seq. Their new method, named 
integrated digital error suppression (iDES), 
combines two clever and complementary 
strategies to eliminate errors introduced 
when ctDNA is captured and prepared for 
sequencing and was  reported in a March 
2016 paper in Nature Biotechnology. 

“Could we use it for screening? That, of 
course, is the Holy Grail and the hardest 
problem,” says Diehn. “But we could also 
use it to monitor response to drugs or the 

development of drug resistance in patients. 
Those are just some of the projects we’re 
working on.”

Hitting rewind 
Cibersort likewise had its roots in a clinical 
problem.

The severity of a cancer is often tied to the 
diversity of cells in a tumor, and information 
on that diversity can be key to effective 
treatment. Pathologists and researchers 
get a handle on that diversity today through 
flow cytometry, in which cells in a sample 
are separated and then labeled and counted 
using antibodies, or via microscopy. This 
is relatively easy when dealing with blood. 
But tearing solid tumors apart can destroy 
certain types of cells and, in either case, the 
antibodies required for a comprehensive 
profile are not always available. 
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Ash Alizadeh 
Ludwig Stanford

“When Aaron Newman, a very talented 
postdoc in our group, first approached 
me about trying to tackle this problem 
computationally, I was skeptical,” recalls 
Alizadeh. Newman was proposing to turn 
tissue into the equivalent of a smoothie 
and use the molecular clues in there, plus 
some software, to identify the cell types in 
the intact tissue. Others had tried similar 
approaches before with uneven results.  
“But he took up the challenge with such 
fierce and unwavering commitment that  
he produced something pretty powerful,” 
says Alizadeh.

One big challenge in any such analysis 
is that all cells express a basic subset of 
housekeeping genes, making for a lot of data 
“noise” through which the unique signal of 
a specific type of cell must be detected. 
Another is that any tissue sample is likely to 

contain cell types the computer does not 
know about and so cannot take into account 
in its analysis. 

To build Cibersort, the researchers read  
the transcripts of expressed genes from 
about 20 cell types and developed a 
fingerprint for each based on about 500 or 
so genes each characteristically expresses. 
Newman then applied machine-learning 
algorithms—the sort of programs used in 
speech recognition and self-driving cars—
to address the anticipated data noise and 
confusion, and to reconstruct the tissue 
based on those fingerprints. 

Cibersort requires much less work and 
introduces fewer variables than current 
methods for analyzing cell types in tumors, 
says Diehn. It is also sublimely precise.  
“We’ve been able to detect very closely 
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related yet distinct subsets of immune  
cells, down to really low fractions of one 
percent or less of the total,” he notes.  
“We can even discern active subsets of 
immune cells from inactive ones.” 

Good prognoses and bad 
PRECOG too addresses a sticky problem  
in cancer research. Researchers have not 
been able to figure out precisely how the 
profiles of genes expressed in tumors 
correspond to outcomes in most cancers. 
Many have found patterns, but such findings 
have largely been hard to replicate, except 
in a few types of malignancies like breast 
cancer. This, says Alizadeh, is because  
most such studies were too small compared 
with the number of genes expressed by 
cancer cells.

But about five years ago, the researchers 
noticed that there was a critical mass of 
relevant data available: Tumor samples from 
tens of thousands of patients had been 

genetically profiled and stored along with 
their clinical outcomes. 

Working with their colleagues at the  
Stanford Center for Cancer Systems Biology, 
including Andrew Gentles and Sylvia Plevritis, 
the researchers built a database that they 
named PRECOG by curating data from 
their own studies and those of their past 
collaborators, and by browsing information 
deposited in public repositories. The results 
of their analysis were surprising.

“Across the 39 cancer types we looked at, 
tumors had far more in common than they 
did distinguishing features when it came to 
patient prognosis,” says Alizadeh. “About 
two-thirds of the genes that are prognostic 
for one cancer are prognostic for at least  
one other cancer type.”

The team was able to identify the top 
10 genes broadly associated with each 
prognosis. In particular, high expression  
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of FOXM1, a gene involved in cell growth,  
was associated with a poor prognosis  
across cancers. Meanwhile, the expression 
of a gene known to be involved in immune 
responses, KLRB1, seemed to have as broad  
a protective effect. 

To get a better sense of the immune 
component of outcomes, the researchers 
applied Cibersort to the problem, painting 
a sweeping portrait of the association of 
immune cells with prognoses.

“Immune cell contributions can be upside-
down from cancer to cancer,” says Alizadeh. 
“An immune cell like a macrophage can be 
favorably prognostic in a lymphoma, but very 
adversely so in, say, a breast cancer. If you 
were trying to engage macrophages with an 
immunotherapy, you might want to know 
about that.”

PRECOG, which is freely accessible, has 
obvious implications for cancer research 
and the development of new therapies and 
diagnostics. Diehn has already led a study, 
published in the Journal of the National 
Cancer Institute in 2015, reporting a potential 
diagnostic test for NSCLC based in part on 
information gleaned from PRECOG. 

“The test predicts which patients will  
benefit from more aggressive, systemic 
therapy after having lung tumors removed in 
early stage lung cancers,” says Diehn. The test 
would have to be validated in a large clinical 
trial, he notes, but because it only requires 
detection of nine genes, most clinical labs 
would be able to perform the assessment.

“As oncologists,” says Alizadeh, “we are often 
humbled by the fact that we’re shooting in 
the dark and lack the tools we need to see 
the responses we’re hoping to see. But we’re 
very hopeful.”

With good reason, it would appear.

The researchers  
built the PRECOG 
database by curating 
data from their own 
studies and past 
collaborations, and 
with information in 
public repositories. 
The results were 
surprising.


